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1. INTRODUCTION

This is Part II in a sequence of papers, the first one being [1]. We
have tried to make the presentation essentially self-contained by restating
certain results without proofs, but we shall frequently refer the reader to
Part I for details. Part I also contains a more detailed introduction to the
problem under study and an historical account of it, as well as a relevant list

of references.

Given an m-dimensional stationary stochastic process {y(t); t € R}, which
is real, Gaussian, purely nondeterministic, mean square continuous and centered,

the basic problem is to find representations of the type

y(t) = Cx(t) (1.1)
where C is a linear time-invariant operator and {x(t); t ¢ R} is a (generally
infinite dimensional) vector Markov process, for which we can obtain a differ-

ential equation representation.

This problem can be given a mathematically more precise formulation in
a Hilbert space setting. To this end, define H to be the Gaussian space
generated by y, i.e., the linear hull of the random variables {yk(t): t € R,
k = 1,2 ..., m} closed in Ly norm. The space H is a Hilbert space with inner
product <§,n>= E{&n}, where E{.} denotes mathematical expectation. To de-
scribe the dynamical aspects of the problem we need to define the past and
the future of H and to introduce a shift operator on H: Let the past space H™
and the future space H* be the closed linear hulls in H of {yk(t); t <0,
k=1,2, ..., m} and {yk(t); t 20, k=1,2, ..., m} respectively. Moreover,
since y is stationary, there is a strongly continuous group {Uy; t € R} of
unitary operators H = H such that yk(t) = Ut_syk(s) for all t,s and k[2].
Given three arbitrary subspaces A,B and X of H, we shall write A L B when

A and B are orthogonal and A L B|/X when they are conditionally orthogonal

1
\
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given X, 1i.e., «Exa, EXB> = <a,f> for all o e A and B ¢ B, where [\
denotes orthogonal projection onto X. Finally we shall write A v B to de-

note the closed linear hull of A and B.

The problem at hand can now be formulated as a geometric problem in the
Hilbert space H: Find all subspaces X such that

(1) X is Markoviam, i.e.
X" 1 x*x (1.2)

- +
where X :=V/ (UtX) and X := Vt 5 1 (UtX).

ts0

(ii) yk(O) e X for k=1,2, ..., m

(iii) X is minimal, i.e., there is no proper subspace of X satisfying

(1) and (i1).

Each solution X of this problem gives rise to a representation of
type (l1.1). In fact, a vector process {x(t); t ¢ R} taking values in some
suitable function space can be constructed by appropriately choosing a basis
in X and applying the shift Ut to its components. (Note that, since v i
mean-square continuous, H 1is separable.) In view of (i), this process must
be Markov. Condition (ii) then yields a representation (1.1). Finally,
(1ii) insures that the state space X 1is as small as possible. In Section 7
we shall describe how this choice of basis is made in the finite dimensional
case (dim X < =), postponing the infinite dimensional case to a subsequent

paper, Part III. (The geometric theory of Sections 2-6 does not, however,

require any restriction of the dimension of X.)

This paper constitutes not merely a sequel of Part I; it contains many
extensions, generalizations and other improvements of the results presented
in Part I. We have found that the geometric theory is most easily understood
and explained in terms of perpendicularly intersecting subspaces, and we de-

vote Sections 2 and 3 to this reformulation. In Section 4, we show how the




concepts of deterministic realization theory [3,4] can be used to provide fur-
ther insight into the stochastic theory, and Section § and o contain extensions
of the spectral domain theory presented in [1]. Section 7, finally, is devotgd

to dynamical representations of finite dimensional state spaces.

2. PERPENDICULARLY INTERSECTING SUBSPACES
Let A and B be two (closed) subspaces of the Hilbert space H. We

. e
tng subspace if

shall say that the subspace X ¢ H is an  (d,R)-anliet
A 1 BIX. Cd.1)

If there is no proper subspace of X which also satisfies (2.1), X is said
to be minimal. The purpose of this section is to determine under what condi-
tions on A and B there is only one minimal (A, B)-splitting subspace.

LEMMA 2.1 There s one and only ome minimal (A, B)-aplitting subsrace oon-

. . 4 4 : =A =
tatned tn A (in B), namely X = £'B (X = tRA\. (The bar over the £ denotes closure.)

Proof. The useful decomposition formula

A= EAB ® (A n Bl) ( g

implies that EAB =Ae (An B') and that A e EAR 1 R, the latter of which is
' equivalent to (2.1) with X = E'%.  on the other hand, any (A,Bl-splitting

subspace X containing A satisfies A e X 1B, i.e., A0 Xc An Rl, or

equivalently X > A e (An 5y, 1.6, X = iBa. 0
LEMMA 2.2 A71 (A,Blspiitting subspaces comtain A o B,

Proof. Let ne A n B. Then n & nlIX, i.e.. n ¢ X. 0

Consequently, if there is only one (A,B)-solitting subspace, we have

g8 = 8% « A n 8. Conversely, if

EAB = An B, (2.3)

» VI AN Bl sy e R POn e S
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and it must be the only minimal (A,B)-splitting subspace, since all such sub-
spaces contain A 0 B (Lemma 2.2). We shall sav that A and B {nterscct
vervendicularly if one of the two equivalent conditions (2.3) or (2.4) holds.

PROPOSITION 2.1. There is a wunique minimal (A,B)-3plitting subspace

fand only tf A and B <iIntersect perpendicularly and it is given by (2.3)
and (2.4).

The following proposition provides an alternative characterization of
perpendicular intersection of subspaces in the case that they span the whole
space.

PROPOSITION 2.2. Let A v B=H. Then A and B intersect perrendi-

Fa g L L Iy L e ) 3 e G §
cularly tf and only tf B” < A, or equivalently, A ¢ B, (Here A~ denotes
the orthogonal complement of A in H.)

x i L 3 - =A 5 -

Proof. (if): Assume that B ¢ A holds. Set X = E'B. Then (2.2)
yields A = X ® BY, from which it follows that X ¢ B and that A n B = X.

o - =A , < S

(only if): Set X = E'B and assume that X = A n B. Then it follows

from (2.2) that (A e X) L B. Therefore, since A v B=H and B - X,
1 :
B C .‘\. Lj

In the sequel, we shall need the following simple observation, the proof
of which is trivial,

LEMMA 2.3. et A, B, A' and B' be four subspaces such that A c A'
and B c B'. Then any (A',B')-gplitting subspace 78 alec e (A,B)-gplitting

3. THE GEOMETRY OF SPLITTING SUBSPACES REVISITED
Our basic problem is to determine the set of all minimal (H'.H*)-

. - + " .
splitting subspaces, where H and H are the past and future spaces of the

B—— T




(e}
given stochastic process {y(t): t ¢ R}; we shall usually drop the prefix !
(0,09, plain "splitting subspace" referring to the pair (H,H). If H and 1
H' intersect perpendicularly there is only one minimal splitting subspace, ;
namely the present space ’j
H® = H n H' (3.1 i

(Proposition 2.1). When y has a rational spectral density, this corresponds

to the case where y can be realized by a purely autoregressive scheme. How- '

ever, in general this is not the case, and there is a whole family of minimal §

splitting subspaces, two of which are the forward and backward predictor
H §

spaces X := E'H"  and X, := EH H™ respectively (Lemma 2.1). Defining 4

N :=H eX and N = n e X, we obtain the orthogonal decomposition ;

H=N eH e N, (3.2)
where H is the Gaussian space of the process y and HY is the frame space
HE := X_v X, . InPart I, we showed that all minimal splitting subspaces X
satisfy

W e % c W, | (

(2]
(2]
-4

i.e., the frame space is the closed linear hull of all minimal splitting sub-
spaces, hence containing all pertinent information about y. We shall call
N" and N the JunX spaces since all info;@ation in them may be discarded.
By applying (2.2), it is immediately seen that N = H n (H*)l and N’ =

H n (H')l. In the special case that H  and H intersect perpendicularly

o o it
H and H coincide.

The following theorem expresses the fact that any (minimal or nonminimal)

splitting subspace can be regarded as a minimal splitting subspace if the past

and future spaces are extended so that they intersect perpendicularly.
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THEOREM 3.1. The space X ¢ H {8 a splitting subspace if and only if it
is the (unique) minimal (S,5)-splitting subspace
X =S8 (3.4)
for some perpendicularly intersecting swubsvaces S and § such that S - H
od $ o N The sorresrondence X o« (8,8)  fs ome-ome, the pair  (S,3) being

L S ma
untquely determined by the re

COROLLARY 3.1. (3.4)

Representation

Sy R = e
* o ™
Joceowng rour equrvalLent

ways:

X=So§
xs8eo¢
X = B°8
X = Egs.

Proof. Theorem 3.1 in Part I states

and only it (3.5) or (3.6) holds for some

and  ($,%) are related as in the last
then S* < 3, and therefore S and §

and X is given by (3.3) (Proposition 2.

by comparing (3.5) and (3.6) to (2.2).

A subspace containing the past space
rast space and one containing the future
shall say that an extended past space S
if there is a minimal splitting subspace
This definition coincides with that in [S

spaces (to be defined shortly).

sentence of the present theorem.

+

LZ’L{ :g = H ¥ Xe

H™ v X

y . .
Ly ¢ ,
mQly aLso be written tn any of

that X 1is a splitting subspace if
S>H and § -1, and that X

But

intersect perpendicularly (Proposition 2.2)

1). Relations (3.7) and (3.8) tollow

N
()

H™ will be called an extended

+ o ;
H an extendeq futwre space. We
S) is minimal

(extended future space

X such that S =H v X (§=8"v X).

] for regular Markovian

splitting sub-




PROPOSITION 3.1. An extended past space S is minimal if and only if

. RANE © =

Sc (N) (3.9)
and an extended future space S t8 mintmal tf and only if

a .. M z

O (3.10)

3 - = - s .
Proof. (if): In the first case, choose S = s* Vv H and in the second

“ V H . Then it follows from Theorem 3.1 in Part I that X :=

pu
=
0
(s
v
"
o

S n S is the required X.

(only if): Since a minimal splitting subspace X 1is contained in H®

we have S=H vXc (NDYand §=H" vXe )*. 0

J

The reason for this definition of minimality will become clear in Sec-
tion 5. Note that an arbitrary pair (8,5) of perpendicularly intersecting
minimal extended past and future spaces will not necessarily define a minimal
splitting subspace X, although any such X will be contained in the frame
space Hu. For X to be minimal, the pairing of S and S must be done in
a more precise manner. This leads to the concepts of observability and con-
structibility as defined by Ruckebusch.

el 3 § T
A splitting subspace is said to be observable if E'H = X and con-

gtructible if E'H = X. In Part I, we showed that X = S n § 1is observable

§astvy (3.11)

PROPOSITION 3.2. Let X be a splitting subspace, and let S and 8§

4. . ) - 5 _va .
by A > ol ¢ et + ¢ s

be the corresponding extended past and future spaces. Then the following
J4 ~s > S ab - 7

conqLeiLong are equLYac




(1) X 28 mintmal
(i1) X ts observable and constructible

S 78 mintmal

.

(ii1) X Zs observable

(iv) X 18 constructible and S i3 mintmal

For a proof of the equivalence of (i) and (ii), see [6] or Proposition 4.2
below. Keeping Proposition 3.1 in mind, the rest follows from Theorem 3.1 of
Part I. Note that minimality of X imposes a definite pairing of S and S.

For example, X  corresponds to S := H and § := (Nt and X, &0 B, =

+

% and § := H .
+

o~
Among all minimal splitting subspaces X we shall eventually only be able

to use those which are Markovia, i.e., those which satisfy condition (1.2).

As pointed out in Part I (the original reference is [6]), X 1is Markovian if

and only if the corresponding extended spaces S and S satisfy the follow-

ing two conditions:

IA
o

UtS e S for all ¢t (3.13)

UtS c S for all t

v
(=)

(3.14)

i.e., S must be left invariant and S right invariant (under the shift Ut).
Note that, if X 1is observable, we need only impose condition (3.13); then,
in view of (3.11), (3.14) will follow automatically. In the same way, only

(3.14) is needed when X is constructible. It is easy to see that for a

Markovian splitting subspace S = X and 5 = X', i.e., X~ and X' inter-

sect perpendicularly. In general, S and S are givenby S =S o S, and

1

S = §1 ® S, where S, and S, are dowbly fnvariant, i.e., they satisfy both

(3.13) and (3.14), whereas 8, and 31 are only simply invariant. Then

R Utg = 32, f.6., S, and 32 are the purely deter-

LS = S2 and nt g 5

Tt ¢ Rt

ministic parts of S and S respectively. If S, =0 (5,=0), we shall say

-
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that S (5) 1is purely nondeterministic. A splitting subspace for which both
extended spaces S and S are purely nondeterministic will be called rezular.
In view of Lemma 2.1 of Part I and the fact that S < S, both S and S are
full range whenever X 1is regular. The usefulness of this concept is that the

class of regular Markovian splitting subspaces is in one-one correspondence with

a certain class of pairs (W,W) of full-rank factors of v, W being stable

-

and W strictly unstable. We shall return to this in Section S.

To insure that all minimal splitting subspaces are regular, we need to

S

~
introduce the concept of noncyclicity. We say that the given process y is i

- . . . . . . - *
noncyclic if it has nontrivial junk spaces, i.e., N #0 and N = 0, and

g e - +
strictly noncyclic if both N and N are full range.

PROPOSITION 3.3 Let y be strictly noncyclic. Then all minimal split-

o
-
= 4
-~
%

1 v
Wo8praces are regular.

Proof. If N  and N are full range, (N)' and (N+)l are purely
nondeterministic (Part I; Lemma 2.1). Hence, the proposition follows from

(3.9) and (3.10). a

4. HANKEL OPERATORS AND MINIMALITY OF SPLITTING SUBSPACES

Given an arbitrary splitting subspace X, there is a unique pair (s8.,5) |
of perpendicularly intersecting subspaces such that § o i, 8 & H and \‘\’
X =Sn S (Theorem 3.1). We shall try to gain some further insight into the |
conditions under which the state space X is minimal by applying the basic
concepts of deterministic realization theory [3,4]. Let G: S+ S and G*:

S » S be the Hamkel operators G = Eslg and G* = Egls, where AIB denotes

the restriction of the operator A to the domain B. Furthermore, let R(A)

denote the closure of the range and N(A) the null space of A.
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PROPOSITION 4.1. The operators G and G* are adjoints. Moreover,
N@G) = st, N(G*) = §* and
R(G) = R(G*) = X, (4.1

where X = S n S.

Proof. To see that the first statement is true, note that for all s < S

and 3 ¢ §

<G§,s>s = <§,s> = <§5,G*s>3,

where 48 5V is the inner product restricted to S. Relations (4.1) follow

from (3.7) and (3.8), and, since S ¢ § (Proposition 2.2), N(G) = S*. In

gt

“

O

the same way, it is seen that N(G*)

By Corollary 3.1, X =S eSS =56e st Consequently, X 1is isomorphic

to the quotient spaces 5/3" and /5%, i.e.,
X & §/N(G) and X = S/N(G*) (4.2)

(Proposition 4.1). Actually, by choosing representations in the equivalence

classes properly, we may identify X directly with the quotient spaces in (4.2).

The formulas (4.1) show that the factorizations of G and G* through

X described by the commutative diagrams

G*

¢
§ —5 § — §

(4.3)
Ex;g\ /J Exb. /.T
X X

(where J: X »S and J: X + S are the insertion maps Jx = Jx = x) are
canonical in the sense that Exlg (EXIS) maps onto a dense subset of X and
J (J) 1is one-ome. This canonical property, as well as (4.2), illustrates

the fact that X is a minimal (S,S)-splitting subspace. (Cf[3; p.259].)

| FIRSTe v . i SRR e S a8 - SN I L et tn - of"
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We shall now relate this approach to the concepts of observability and con-
structibility defined in Section 3 by investigating under what conditions X s
. . » > » - + e - .
a minimal splitting subspace [with respect to (H ,H)]. The tollowing lemma

provides us with two splitting subspaces which are potentially smaller.

LEMMA 4.1. Constder the restricted Hamkel opermators G := Gl and
- -~ N ¥ . - = . " . . ¢ o »
G = G- Then R(G) and R(G') are splitting subspaces contained in X.

e a &
Proof. It suffices to prove the statement concerning G ; then the one

- '~ . . . q‘ ~ = -’ ”
about G follows by symmetry. Trivially R(G ) ¢ R(G), and hence R(G ) < \

= =S
(Proposition 4.1). Obviously, the predictor space R(G*\ = 1" is an (S.H*\-

=2

splitting subspace, and hence also a splitting subspace (Lemma 2.3). (

. - . - . . > u* ™
It is theretfore natural to consider the tfactorizations ot G and G

through X induced by those in (4.3), i.e.,

1‘ - o
G G

HY———es
\ / \ / (4.4)
0 J C 3
\

X i < X
where 0 := E"| + 1is the observability operator and C := E7|

H the

H
congtructibi ity operator. The first factorization is canonical if and only

if O maps onto a dense subset of X, 1i.e., X 1is observable, in which case
X = k(G‘). The same statement holds for the second factorization (4.4) it we
exchange 0 for C, G* for G and observable for constructible. Conse-
quently, minimality of X is equivalent to both tactorizations being canonical
(Proposition 3.2). Note that, unlike the situation in deterministic realiza-
tion theory [3,4], fwo factorizations are needed. In this respect, constructi-

bility is a form of dual observability and does not correspond to reachability,

The "reachability operators" J and its dual J are alwavs one-one and play
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no important role here. (Since in effect we are working with spaces of func-
tionals of inputs and outputs, both diagrams are dualized as compared to the
deterministic setting in the sense that all arrows and the order between the

observability and reachability operators have been reversed.)

The previous discussion suggests that a splitting subspace X 1is observ-

able if and only if, for a given S, S 1is as small as possible, and that,
dually, the same holds for constructibility exchanging S for S and vice

versa. To clarify this point, first consider the following lemma.

LEMMA 4.2. Let X and X' be two splitting subspaces and let (S,S)

and (S',S') be the corresponding extended past and future spaces. Then X c X' ‘

if and only if S < S' and S < §'.

Proof. In view of (3.4), the (if)-part is trivial. It remains to prove

BRIV —

(only if). Since S =H v X (Theorem 3.1), X' c X implies that S' < S. | {

The rest follows by symmetry. 0

Consequently, in order to obtain a minimal X = S n §, we must reduce
S and S as much as possible. Now, keeping S fixed, it is easy to see
that the smallest S which both contains H' and intersects S perpendicularly
is §=H"v Sl, i.e., exactly the condition (3.11) for observability. Like-

wise, keeping S fixed, S =H v §*

is the smallest subspace containing H~ S
and intersecting S perpendicularly, yielding the constructibility condition

(3.12). We shall now discuss some consequences of these observations.

First, this provides us with an alternative proof of the equivalence of
conditions (i) and (ii) in Proposition 3.2, which we restate here in a some-

what stronger form.

AL b A

: ' . R—
y NPUIURSSSESY | PRt w-h‘) o pets g g i it L BN
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PROPOSITION 4.2. rLet S > H and S > H be two arbitrary subspaces,
and set X =S n S, Then X {8 a minimal splitting subspace if and only if

both conditions (3.11) and (3.12) hold.

Proof. (if): Assume that (3.11) and (3.12) hold. The S ¢ §, i.e.,
S and S intersect perpendicularly (Proposition 2.2). Hence, X 1is a split-
ting subspace (Theorem 3.1). It remains to show that X is minimal. In order
to reduce X either S or S or both must be reduced while neither can be

enlarged (Lemma 4.2). But this is inconsistent with (3.11) and (3.12), since

S and S will not be reduced. Hence X 1is minimal.

(only if): Suppose that X 1is a minimal splitting subspace. Then the
pair (S,3) is uniquely determined; we must have S = H v X and § = H v X
as in Theorem 3.1. In fact, under the given conditions, neither S nor S
can be smaller, and enlarging (say) S (as given by Theorem 3.1), to S @ T
will yield (S®2)n3=X®Z =X, since Zc S'c3 (Proposition 2.2).
Now assume that (say) (3.11) does not hold. Since § contains H" and inter-

< = + A4 < - 2
sects S perpendicularly, S >H v S°. Then, by the discussion above, S

can be reduced to H’ v Sl. Since S = H+ v X, this would reduced X too,

contradicting minimality. 0

Secondly, given any splitting subspace, the above procedure defines an

algorithm by which a minimal splitting subspace can be constructed.

PROPOSITION 4.3. Let X' be an arbitrary splitting subspace and define
i1

. + - 1 5 - < = @ g
S:=H vMH vX) and S :=H v et X =SnS. Them X ts a mintmal

un

5

splitting subspace. If X' ts Markovian, then so is X.

Proof. (i) To show that X is a minimal splitting subspace, it only

L

3 a h §ad N s
remains to prove that S = H v § (Propesition 4.2). The given condition

3 " o a 2 9 3
s=H v§ implies that st e S, and consequently H v st c 8.

e ———————————————

alla. s oo

.

e b s cloe
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Set S' =H v X'. Then, since (S') ¢ S, S' contains H and intersects S
perpendicularly. But § is the smallest subspace with this property. Hence,

- : 1 1 ¢ ; : = + . - + .
ScsS', i.e., (S§')" ¢ §, which implies that S ¢ H v Sl, Hence, S = H v 51

as required.
; (ii) To prove that X 1is Markovian, we must show that (3.13) and (3.14)

hold. Since X' 1is Markovian, S' satisfies (3.13). Then (S')‘L satisfies

(3.14) and, since the same is true for H*, S also satisfies (3.14). Now,

by a symmetric argument, it is seen that S := H v 3' satisfies (3.13). D

5. SPECTRAL REPRESENTATION OF REGULAR MARKOVIAN SPLITTING SUBSPACES
Since the given process y 1is stationary, mean-square continuous and

purely nondeterminstic, it has the spectral representation
st LA
¥it) = J e dy(s) (5.1)

3 ’ . " . G A
where integration is over the imaginary axis and dy 1is an orthogonal stochas-

tic vector measure such that
" A, . )
E{d} (iw)dy (iw)*} = d(iw)dw, (5.2)

® being the mxm spectral density. Assume that ¢ has rank p s m. Then

a full-rank spectral factor is any mxp-matrix solution of

W(s)W(-s)" = &(s) (5.3)

such that rank W = p. To any such spectral factor, we may associate a

p-dimensional Wiener process

St
u(t) = I" Lali(s) ; 40 = w ke, (5.4)

which spans the whole space H (see Part 1). (W‘L is the left inverse of W.)

Let U denote the class of all such Wiener processes. Let H (du) and H‘(du\

be the closed linear hulls in H of respectively the past and the future of
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the process u. We shall say that W 1is stable if its rows belong to the
Hardy space H; of p-dimensional functions f which are analytic in the open |
right half-plane and such that J I} £(o + iw) ||2 dw 1is uniformly bounded for
all o >0, and strictly wnstable if its rows belong to the conjugate Hardy
space H:_', Let U and U be the subclasses of U corresponding to stable

and strictly stable spectral factors respectively. |

LEMMA 5.1. There is a one-onme correspondence between stable full-rank
spectral factors W (determined modulo multiplication with a constant wnitary
matrix) and left invariant [t.e., satisfying (3.13)]and purely nondeterministic

subspaces S > H . The subspace S 1i8 related to W by
S = H (du) (5.5)
where u e U is the Wiener process corresponding to W.
LEMMA 5.2. There is a one-one correspondence between strictly wnstable
full-rank spectral factors W and right invariant,[i.e., satisfying (3.14))]

and purely nondeterministic subspaces S > H'. The subspace S 1is related

to W by

- ..

S = H (du) (5.6)
where u € U™ is the Wiener process corresponding to W.

The proofs of these lemmas can be found in Part I, where somewhat differ-

ently stated but equivalent results are given.

It was shown in Part I that, to each u € U,
J f du —> ¢ (5.7)

defines an isomorphism between H and the space L;(I) of all p-dimensional

row vector functions which are square-integrable on the imaginary axis.
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By the Paley-Wiener Theorem [7,8,11], the isomorphic image of H (du) under
Qu is precisely the Hardy space H:.
Now, in view of Theorem 3.1 and Lemmas 5.1 and 5.2, X is a regular
Markovian splitting subspace if and only if 1
= + ¢
X = H (du) o H (dQ) (5.8) J
for some u ¢ U' and @ € U™ such that H (du) and H'(di) intersect perpen- 1
dicularly. ]
LEMMA 5.3. et ue U and u e U7, and let W and W be the correspond-

tng spectral factors. Set
K=W "W (5.9)
. - = A : . s i
Then S :=H (du) and S := H (di) <intersect perpendicularly if and only if

K 78 an inmer function. (See Part I for definition.)

Proof. The subspaces S and S intersect perpendicularly if and only

if §tcs (Proposition 2.2), i.e., H (d@i) < H (du), the isomorphic image
of which (under Qu ) is H:K c H:; to see this use Lemma 4.3 of Part I.

Since 5% is full range and left invariant, Lemma 4.1 of Part I can be used i

to show that Qu§l = H:K is a full-range invariant subspace of LE(I) Il

Hence, in view of the Beurling-Lax-Helson Theorem [7], H:K € H: if and only

if K 1is inner. 0 \\"

By Corollary 3.1, (5.8) can be written X = H (du) e H (dd), the iso-

morphic image of which (under Q ) is QuX = H: e (H:K). Consequently

u

X = j(H:K)ldG. (5.10)

= " ; : I
where u € U is the Wiener process corresponding to W, and the superscript
p > 3 g
denotes orthogonal complement in #H,. We collect these observations in the

following theorem, which is a slight generali:zation of Theorem 4.1 in Part I.
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THEOREM 5.1. The subspace X 1is a regular Markovian splitting subspace
if and only if (5.10) holds for some pair (W,W) of full rank spectral factors

. = . . =-L a e
such that W 1ts stable, W 1is strictly unstable, and K := W W ts inner.

In particular, if y 1is strictly noncyclic, all minimal Markovian split-

ting subspaces are given by Theorem 5.1 (Proposition 3.3). 1

6. SPECTRAL DOMAIN CRITERIA FOR OBSERVABILITY, CONSTRUCTIBILITY AND MINIMALITY ?

Theorem 5.1 provides us with a procedure to find all regular Markovian

splitting subspaces: All possible pairs (W,W) of full-rank spectral factors
with W stable, W strictly unstable and KX = W'Lw inner, inserted into (5.9)
and (5.10), generate the whole family of such splitting subspaces. But how can
we decide whether such a pair will provide an observable, or a constructible or
a minimal splitting subspace? We need to translate the geometric criteria of

Section 3 into spectral domain language.

To this end, first note that W is a stable full-rank spectral factor if

and only if it can be written
W= W, (6.1)

where 6 1is an inner function (for H, ) and W 1is the unique outer spectral

o+

factor, corresponding to S =S := H . Similarly, W 1is a strictly unstable

full-rank spectral factor if and only if it has the representation

W=W§h (6.2)

+ »

where 8 1is conjugate inner (inner for H_ ) and W; is the unique conjugate

-

outer spectral factor, which corresponds to S = S, := H'.

PROPOSITION 6.1. Let X be a regular Markovian splitting subspace, let

(6.1) and (6.2) be the corresponding spectral factors, and let K be defined

1

by (5.9). Then X is observable if and only if K = and © are right
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coprime and constructible tf and only if K and 8 are right coprime.

Proof. Let S and S be respectively the extended past and future
spaces of X, and let u and 0 be the Wiener processes defined through the
representations (5.5) and (5.6). Using Lemma 4.3 in Part I, it is seen that
the isomorphic image of the constructibility condition (3.12) under the map
Qu is H; = (H;K) v (H;e), which holds if and only if K and 6 are right
coprime. In the same way, using the map Qﬁ, the observability condition

(3.12) is seen to be equivalent to K'l and 8 being right coprime. 0

In order to apply conditions (iii) and (iv) of Proposition 3.2, we also
need to characterize minimality of S and S in the spectral domain. We
shall say that a stable (strictly unstable) full-rank spectral factor is mini-
mal if it corresponds to a minimal extended past (future) space. Assume that
y 1is strictly noncyclic. Then X  and X* are regular splitting subspaces
(Proposition 3.3), and consequently there are associated pairs (W_.W;) and
(W*,W;) of full-rank spectral factors (Theorem 5.1). Then define K_  and
K* to be the corresponding functions (5.9). We showed in Part I that in the
scalar case, all minimal Markovian splitting subspaces have the same X, so

that in particular K_ = K but it is still unclear to us what happens in

+?
the general case. Moreover let 6 _ be the 6 in (6.1) corresponding to

W, and 8_ the § in (6.2) corresponding to W.

PROPOSITION 6.2. Suppose that y is strictly nonmcyclic. Let W be a
stable full-rank spectral factor, and define J = w’Lw*. Then J 1is inner
and the following conditions are equivalent:

(Z) W t8 mintmal

(tt) 0 1is a left tmmer divisor of 8, t.6., there ts an inner

function ¢ such that 69 = 9*.

(iit) J and K, are right coprime.

v e




i
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Proof. The equivalence between (i) and (ii) follows from Proposition 4.1
in Part I. The equivalence of (i) and (iii) follows from Theorem 5.1 in

Part I. a

The fact that (i) and (ii) are equivalent was first proven in [5] in the

scalar case. The dual version of Proposition 6.2 goes as follows.

=
o
L\

PROPOSITION 6.3. Suppose that y <tis8 strictly noncyclic. Let

. S o =
trictly unstable full-rank spectral factor, and define J = W “W. Then

<
I
%

; ; o A e Ty S i
conjugate tnner and the following conditions are equivalent:

() W s mintmal
(i) 6 ts a left tnner divisor of 6.

v J -1 ) Y NIt 3 )
ana K are right coprime.

-—
I

4,
©,
~
|

7. STATE EQUATIONS FOR FINITE DIMENSIONAL MARKOVIAN SPLITTING SUBSPACES
If the matrix function K is rational the representation (5.10) is par-

ticularly simple to realize.

PROPOSITION 7.1. Let X be a regular Markovian splitting subspace.

Then X tis8 finite dimenstional if and only if K, defined by (5.9), is rattonal.

bl:. Let u

Proof. As pointed out in Section 4, X = i(G], where G = E 3

be the Wiener process associated to S through relation (5.5). Then, under

Q §= H. and 3 = HX (Part I: Lemma 4.3), and consequently, using the

-

notations of Section 5 of Part I, G 1is isomorphic to the Hankel operator HK'
Since therefore X = i(HK\. dim X < ® if and only if K is rational [4; p. 395,

Theorem 3.8]. (To prove the if-part, follow the lines of the last part of the

proof of Lemma 7.1.) g

VoA eey AR TR R e T e
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In general, there are no finite dimensional splitting subspaces. One very
important exception, however, is the case when the spectral density of y is

rational.

PROPOSITION 7.2. Let the spectral density ¢ be rational. Then all

mintmal splitting subspaces are finite dimensional.

Proof. It is a well-known fact from Wiener filtering theory [8] that,

under the stated condition, the closed linear hull in H of the predictors

{EH y(t); t 20} is finite-dimensional. But this is precisely X := E H,
+

and hence dim X_ < = Then, by symmetry, X+ 1= EH H is also finite dimen-

sional, and consequently so is the frame space H?. Since all minimal splitting

subspaces are contained in H® [see (3.3)], the desired result follows. 0O

COROLLARY 7.1. Let the spectral density ¢ be rational. Then all

splitting subspaces contained in the frame space are finite dimensionmal.

Now consider a finite dimens.ional regular Markovian splitting subspace
with corresponding spectral factors (W,W). Then, by Proposition 7.1, K =
W-Lw is rational. Following Forney [9], we consider the vector space VK

of 2p-tuples over the field of rational functions, generated by the columns

e e

of the 2p x p matrix K = [I,K']'. Then use the algorithm presented in [9]

e

to find a minimal polynomial basis in VK. Let n, be the degree of the

i:th element in this basis, i.e., the greatest degree of the 2p-polynomials

T

R

in the i:th 2p-tuple. Then the minimality of the basis means that n :=

n1 o, o+ np is as small as possible. Let 6 := [Q',Q']' be the

2p x p polynomial matrix formed by this basis. Then

X« Q7L (7.1)

where Q and Q are right coprime polynomial p x p matrices which are colwm

proper [10], i.e., the high order coefficient matrices [Q]h and [Q]h are




IR

full rank ([Q]h is the constant matrix whose 1:th column consists of the

R

coefficients of s in the 1i:th c¢olumn of Q.) The numbers n ) T R

i p

are called the indices of Q (or of Q) [9; Main Theorem and Theorem 5].

= K . g - ol >
LEMMA 7.1. Swuppose that K <tis givem by (7.1). Let £ e (H,K) and

3 s . - p ; 15 . - - “ o : .
define g = fQ. Then g ¢ R [s], where R [s] is the class of p-dimensional
(row) vectors of polynomials with real coefficients.
Proof. In view of (7.1), the representation
A + S R,
(HK)™ = {f ¢ H | fK 7 € H } raE

[7, p. 75] can be written in the form

o0t = (g e ) 1 g e WD)

Set h := gQ

Let f € (H;K)l. Then, since f ¢ H:, g = £fQ 1is analytic
in the open right half plane. Similarly, since h ¢ HE, g = hQ 1is analytic
in the open left half plane. Also f ¢ (H;K)l implies that f can be
analytically extended to the imaginary axis [4; p. 270, Lemma 13.6], so there-
fore g = fQ 1is analytic there too. Hence g 1s an entire function. We
want to prove that g ¢ Rp[s]. To this end, first note that Kk := detK 1is a

Blasche product, i.e., k is the product of relatively prime functions ki(s) 1=

n; n;
(s - si) 1/(s +* Si) 1 (where, for each function ki, s5 is a complex number

and n, an integer), and that K is an inner divisor of kI [7; p. 70].
Then H:k S H:K [7: p. 69] and Hk = ni(H:ki) so that

(Ht < (Hio? =\-"i(HIki)*. (7.4)
Therefore, if we could prove that, for each i, (H:ki)l is a space of rational
vector functions, the same holds true for (H:K)l, and consequently the en-

tire function g must be a vector polynomial. Since ki is a scalar inner

function, it suffices to prove that an arbitrary component of any vector
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: : A A : e
function in (H°ki) is rational; hence, for the rest of the proof, it is no

ety .
restriction to assume that #H, is a Hardy space of scalar functions. Now,

~

using Cauchy's formula, it can be shown [8; p.34] that

1 S - S .

o (5) = — [ 15 ;5 -0, 1, 2, 4
s+ S;|s+ SiJ !
is an orthogonal basis of H;. However, ejki = ej o and consequently 7

i
H:k. is the closed linear hull of {e , e L .}. Hence, (H+k.)l is 4
2 i n, ny + 1 217 <
4
the linear span of {eo, €15 tevs O 1}, which is a space of rational 1
1 q

functions as required. g

PROPOSITION 7.3. Let X be a fintte dimensional regular Markovian split-

ting subspace and let (W,W) be the corresponding pair of spectral factors.
Then there ts an m X p polynomial matrix P such that

-1 21

and W = PQ (7.5)

where Q and Q are defined by the (right coprime and columm proper) factori-

zation (7.1) of (5§.9). The function P has a left itnwerse.

Proof. Equations (5.9) and (7.1) together yiéld WQ = WQ. Call this
matrix function P; then equations (7.5) hold. Since W has a left inverse

so does P. It remains to show that P is a matrix of polynomials. Since

-1

WK =W, (7.2 implies that the rows of W belong to (H;K)l. Hence, by

Lemma 7.1, P 1is a polynomial matrix. O \\\‘

LEMMA 7.2. Por i,j =1, 2, ..., p, Llet pij and qij be polynomials

such that pij/qij = (Q'l)ij. Then, for each i, deg Pij - deg qij < -ny

i
E with equality for some j.

I Proof. By Cramer's rule, [Q-l(s)]ij = (-1)i+jAji(s)/A(s), where A := det Q

and Aji is the determinant of the matrix obtained by deleting row j and




column 1 1in Q. Hence, Aii

of all columns of Q except the i:th, and consequently deg lji Sn-n.

Since [Q]h is full rank, for each
holds. In fact, in each column i
ing row j and column i in [Q]h

forming Aji there is at least one

24

15 a sum of products of one element from each

1 there is a j such that equality
of Q there is a row j such that delet-
leaves a nonsingular matrix. Hence in

product that contains only factors of

highest degree. Since deg A = n, the lemma follows. O
THEOREM 7.1. Let K be givenm by (7.1), and let Nys Moy veey np be
the tndices of Q. Then
- - -1 o
(H. )™ =T, (7.6)
2 (nl, e \Q
T # = P .
, where | t8 the set of all g e R [s] such that, for each
| (Mg My waoy REY
1 2 p
¥ =1, 2, covsPydeg 8 < Ny

remains to show that the functions

are precisely those in T
(ny, n,,

e "
/ - ¢
and let Q and Q be co

5. 7
A,
Hyin

<

xa |
J

-0

Sl TGN

same indices, this follows from Lemma 7.

COROLLARY 7.2. Let X be a fi

2o s > : g o
. 5104
wntte dimenstonal regular Markovian split-

ting subspaces, let (W,N) be the c

Iy
(nl, Rag sy

Proof. From (7.3) it follows that the functions in (H:K)l are of the

form gQ-l where g 1is a row vector of polynomials (Lemma 7.1). It just

- o =
g satisfying gQ 1 € Ht and g = H
But, since Q and Q have the
P

m
. (=)

o . y i . .
o M, Ty N~ =) o re
rght coprime polynoma. matrices satis-

(7.7

. )(iw)P-L(iw)d§(iw), (7.8)
p
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where P I8 the polynomial matrix P = WQ, Nyv Nayyoeees nP are the indices
of Q and T 1is defined as in Theorem 7.1. The dimension of X t¢ equal

BN ivwan. N+ ... 0

1 2 p’
Proof. Theorems 5.2 and 7.1 imply that

x ) J’mr("ll n-)l “ ey np)(lw)q-l(lw)da(lw). (7.9)

Since W = PQ-X, di = QP’LdQ, and consequently (7.8) follows. By Proposi-

tion 7.3, P 1is a polynomial matrix. The statement concerning dim X 1is

immediate. )

Next we proceed to find a basis in X. To this end, first define the

n x p polynomial matrix

N(s) = dlag{nn (s), “n,(s)’ ey T (s)} (7.10)
1 2 P
7 g
where "k is the k-dimensional column vector nk(s) Oy [P e S R sk 1)'
of powers of s, and nl, N, exey np are the indices of Q. Then, since

[Q]h is nonsingular, Q may be written

n»

: L | 2 * . By o 5
Q(s) = [Q]h{dlag(s B aers 8Py » Mi(s)),  (7.11)
where A is the p X n-dimensional constant matrix of polynomial coefficients.
Now, in view of (7.8), the stochastic vector x defined by
K L
X = f Miw)P ™ (iw)dP (iw) (7.12)

is a basis in X.

To obtain a dynamical representation for x, define the shift matrix

J = dmg{Jn : an, - Jn }, (7.13)
1 2 p
. N
where Jk is the companion matrix with characteristic polynomial \’ (s) = s
K
[i.e., Jk is a kK x k matrix with (Jk)ij = 1 whenever j =i + 1 and zero

otherwise], and the p x n matrix E with ones in positions (Egﬂlni.j) and

zeros elsewhere.
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LEMMA 7.3 [10]. Let the n xn matric A and the n x p matrix B be

| defined hy 1
A=Jd - EA |

i -1 (7.14) j
E ' B = E[Q]h ;
¢ Then !
n(s)Q(s)™! = (st - )7 B. (7.15) :

Proof. By definition, :

(sI - A)I(s) = (sI - J)I(s) + EAI(s).

But it is not hard to see that

WY )

n
(sI - J)N(s) = E diag{s 1, snz, oy snp}

and consequently (sI - A)II(s) = BQ(s). g

The pair (A,B) defined by (7.14) is the Luenburger controllable canon-

ical form, and n;, n n_ are the controllability indices [9,10].

9o Heay b,

THEOREM 7.2. Let rank ¢ = p. Then to each regular Markovian split- 3

ting subspace X of dimension n < » there corresponds a stochastic reali- ]

zation

dx

Axdt + Bdu (7.16a) 3
Cx, (7.16b) \

where A, B and C are constant matrices of dimensions n X p, n X p and |

¥

m X n respectively, such that, for all t ¢ R, x(t) <7e& a basis in Utx, g
{u(t) ; t € R} i8 a Wiener process satisfying H (du) =S =H v X, A isa !

stability matrix, (C,A) <8 observable, and (A,B) 1is in controllable canon-

iteal form with controllability indices Ny, Ny, oeee, ny The triplet (A,B,C)

i8 determined in the following way: Let (7.1) be a columm proper and right




. . . . : , : s . G
coprime factorisation of the tmmer function K corresponding to X, and let

Ny Ny veey np be the indices of Q. Them A and B are defined bu (7.
-

and C as the coeffictent matrix of P, i.e.,

Cli(s) = P(s). (7.17)

Proof. Define the n-dimensional process {x(t) ; teR} with components

xk(t] 1= Utxk, k=1, 2, ..., n, Xx being the stochastic vector (7.12).

- wY A
Then x(t) 1is a basis in xt = Utx for all t ¢« R, and, since P Ld? = Q ldu.
L5

x(t) = J 0ty q Y i) dh i), (7.18)

[R5

where the Wiener process {u(t) ; t ¢ R} is determined by (5.5) and Theorem 3.1.

Now, inserting (7.15) into this and transtforming to the time domain, we obtain
t
x(t) = f Mt Dpau(n), (7.19)
-0

which is the integrated version of (7.lca). In fact, since det Q 1is the

characteristic polynomial of A [9], all eigenvalues of A lie in the open
left half plane, and, since Q is a minimal basis in VK (i.e

small as possible), the pair (C,A) 1s observable. To establish (7.lob),

., N is as

first note that, in view of (3.3), V¥(0) ¢ X; hence, there is a matrix C
such that y(o) = Cx. Applying the operator Ut to this, (7.16b) follows.

It is clear from (7.12) that C 1is given by (7.17). Al

Note that we can obtain a whole class of equivalent realizations (7.10)

through transformations of the type

(A,B,C)—e (T AT, T '8, C1),

where T is any nonsingular constant matrix.

The complete analysis of this section can be repeated with time reversed.
Indeed, by replacing Q and Q in the derivation above, we obtain a realiza-

tion (7.16) in which the matrix A has all its eigenvalues in the open right
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half plane. To justify the exchange of Q and Q, observe that (5.11) may

also be written
L
X = f(H,k) du,
where now 1 denotes the orthogonal complement in H,. Then the situation

is completely symmetric.
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